With high stall toque ratio converters, there are important trade-offs. What you take at one end you give up on the other. Typically, a torque converter with a very high stall torque ratio, such as 2.0-2.5, will be much less efficient above its rated stall speed. There is a sacrifice in higher rpm efficiency to achieve high stall torque ratios. That lower efficiency translates into less horsepower transmitted to the tires over an RPM range.
The problem with a high stall torque ratio converter is that it is only high while the car is not moving. Maximum stall torque ratio occurs at wide open throttle with no rotation of the transmission input shaft. As the input shaft starts to rotate with vehicle forward movement, the stall torque ratio will become non-existent much sooner than a converter of the same stall, with a lower stall torque ratio. A converter with a stall torque ratio of 2.2 for example, would display that at the starting line, but it would drop off much sooner than a converter with a lower stall torque ratio.
For example: A competitor's converter with a claimed stall torque ratio of 2.5 (red graph line) would typically have an efficiency of around 90% at high RPMs (5,000 plus). That means 300 flywheel horsepower would translate to 270 horsepower at the transmission input-shaft. A Super Yank Converter with a stall torque ratio of 1.6 (green graph line) has efficiency in the 97% range. That means a 300 horsepower engine would transmit 291 horsepower to the transmission input-shaft: A gain of 21 horsepower! For an LS-1 customer dyno sheet showing 97% efficiency press here.
As you can see, the converter with the lower stall torque ratio will multiply torque for a longer period of time than the converter with a higher stall torque ratio. As most of you know, most racing occurs above 3,000 RPMs. That's why the lower stall torque ratio often wins the race.
*Lower stall torque ratio is gentler on the tires at the initial launch, but it will pull harder for the remaining 1,305 ft. of the 1/4 mile. Less races will be lost at the starting line from excessive wheelspin.
Lower stall torque ratio will be more efficient and transmit more torque and horsepower to the tires.